

DESIGN AND PERFORMANCE OF THE LLRF SYSTEM FOR THE NOVA UPGRADE TO THE FERMILAB RECYCLER AND MAIN INJECTOR *

P.Varghese[#], B. Chase, B. Barnes, D. Vander Meulen FNAL, Batavia IL, 60510, U.S.A

ID:15

Accelerator Upgrades for NOvA

Proton source upgraded from 320kW to 700kW

- Recycler reconfigured as a slip stacking pre-injector
- MI will deliver 4.9×10¹² protons per pulse
 Beam rep rate reduced from 2.2s to 1.33s
- This results in 6×10^{20} pot/yr.

Main Injector, Recycler Beamlines

LLRF Requirements

Main Injector

- Booster injection (Booster Beam to MI)
- Injections through MI8 Beamline
- Support for "SyncMItoBooster" and "SyncBoosterToMI" Functions
- Transfer Slip-Stacked beam from RR to MI
- Transfer beam (not slip stacked) from RR to MI
- MI will continue to frequency lock to RR
- Booster will get its marker and frequency/phase
 reference from MILLRF or RRLLRF
- Frequency jump on transfer from RR to MI

Recycler

- Independent RF control for two cavities
- Slip stacking Booster protons in the RR
- Booster protons in the Recycler w/o SS
- Booster injection only
- SyncRRtoBooster and SyncBoosterToRR
- Frequency control for aperture scans +-2kHz
- Diagnostics
 - Beam to RF phase detector
- Radial position monitor

Recycler LLRF System

Slip Stacking

Injection, Slip-Stacking, Ramping Sequence

Recycler to MI Transfer Alignment

LLRF System

* work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy # varghese@fnal.gov